On Approximating Parametric Bayes Models by Nonparametric Bayes Models
نویسندگان
چکیده
منابع مشابه
Construction of Nonparametric Bayesian Models from Parametric Bayes Equations
We consider the general problem of constructing nonparametric Bayesian models on infinite-dimensional random objects, such as functions, infinite graphs or infinite permutations. The problem has generated much interest in machine learning, where it is treated heuristically, but has not been studied in full generality in nonparametric Bayesian statistics, which tends to focus on models over prob...
متن کاملIdentifiability of Nonparametric Mixture Models and Bayes Optimal Clustering
Motivated by problems in data clustering, we establish general conditions under which families of nonparametric mixture models are identifiable by introducing a novel framework for clustering overfitted parametric (i.e. misspecified) mixture models. These conditions generalize existing conditions in the literature, and are flexible enough to include for example mixtures of Gaussian mixtures. In...
متن کاملSequential Importance Sampling for Nonparametric Bayes Models: The Next Generation
There are two generations of Gibbs sampling methods for semiparametric models involving the Dirichlet process. The first generation suffered from a severe drawback: the locations of the clusters, or groups of parameters, could essentially become fixed, moving only rarely. Two strategies that have been proposed to create the second generation of Gibbs samplers are integration and appending a sec...
متن کاملOn Bayes Factors for Nonparametric
In this paper we derive global Bayes factors for the comparison of a parametric model with a nonparametric alternative. The alternative is constructed by embedding the para-metric model in a mixture of Dirichlet Processes. Results include a general explicit form for partially exchangeable sequences as well as closed form expressions in the context one-way analysis of variance. Our results raise...
متن کاملNonparametric Bayes-risk estimation
Absrract-Two nonparametric methods to estimate the Bayes risk using classified sample sets are described and compared. The first method uses the nearest neighbor error rate as an estimate to bound the Bayes risk. The second method estimates the Bayes decision regions by applying Parzen probability-density function estimates and counts errors made using these regions. This estimate is shown to b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1980
ISSN: 0090-5364
DOI: 10.1214/aos/1176345016